3.2.39 \(\int \frac {x^3 (a+b \csc ^{-1}(c x))}{\sqrt {d+e x^2}} \, dx\) [139]

Optimal. Leaf size=225 \[ \frac {b x \sqrt {-1+c^2 x^2} \sqrt {d+e x^2}}{6 c e \sqrt {c^2 x^2}}-\frac {d \sqrt {d+e x^2} \left (a+b \csc ^{-1}(c x)\right )}{e^2}+\frac {\left (d+e x^2\right )^{3/2} \left (a+b \csc ^{-1}(c x)\right )}{3 e^2}+\frac {2 b c d^{3/2} x \text {ArcTan}\left (\frac {\sqrt {d+e x^2}}{\sqrt {d} \sqrt {-1+c^2 x^2}}\right )}{3 e^2 \sqrt {c^2 x^2}}-\frac {b \left (3 c^2 d-e\right ) x \tanh ^{-1}\left (\frac {\sqrt {e} \sqrt {-1+c^2 x^2}}{c \sqrt {d+e x^2}}\right )}{6 c^2 e^{3/2} \sqrt {c^2 x^2}} \]

[Out]

1/3*(e*x^2+d)^(3/2)*(a+b*arccsc(c*x))/e^2+2/3*b*c*d^(3/2)*x*arctan((e*x^2+d)^(1/2)/d^(1/2)/(c^2*x^2-1)^(1/2))/
e^2/(c^2*x^2)^(1/2)-1/6*b*(3*c^2*d-e)*x*arctanh(e^(1/2)*(c^2*x^2-1)^(1/2)/c/(e*x^2+d)^(1/2))/c^2/e^(3/2)/(c^2*
x^2)^(1/2)-d*(a+b*arccsc(c*x))*(e*x^2+d)^(1/2)/e^2+1/6*b*x*(c^2*x^2-1)^(1/2)*(e*x^2+d)^(1/2)/c/e/(c^2*x^2)^(1/
2)

________________________________________________________________________________________

Rubi [A]
time = 0.21, antiderivative size = 225, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 12, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.522, Rules used = {272, 45, 5347, 12, 587, 159, 163, 65, 223, 212, 95, 210} \begin {gather*} -\frac {d \sqrt {d+e x^2} \left (a+b \csc ^{-1}(c x)\right )}{e^2}+\frac {\left (d+e x^2\right )^{3/2} \left (a+b \csc ^{-1}(c x)\right )}{3 e^2}+\frac {2 b c d^{3/2} x \text {ArcTan}\left (\frac {\sqrt {d+e x^2}}{\sqrt {d} \sqrt {c^2 x^2-1}}\right )}{3 e^2 \sqrt {c^2 x^2}}-\frac {b x \left (3 c^2 d-e\right ) \tanh ^{-1}\left (\frac {\sqrt {e} \sqrt {c^2 x^2-1}}{c \sqrt {d+e x^2}}\right )}{6 c^2 e^{3/2} \sqrt {c^2 x^2}}+\frac {b x \sqrt {c^2 x^2-1} \sqrt {d+e x^2}}{6 c e \sqrt {c^2 x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(x^3*(a + b*ArcCsc[c*x]))/Sqrt[d + e*x^2],x]

[Out]

(b*x*Sqrt[-1 + c^2*x^2]*Sqrt[d + e*x^2])/(6*c*e*Sqrt[c^2*x^2]) - (d*Sqrt[d + e*x^2]*(a + b*ArcCsc[c*x]))/e^2 +
 ((d + e*x^2)^(3/2)*(a + b*ArcCsc[c*x]))/(3*e^2) + (2*b*c*d^(3/2)*x*ArcTan[Sqrt[d + e*x^2]/(Sqrt[d]*Sqrt[-1 +
c^2*x^2])])/(3*e^2*Sqrt[c^2*x^2]) - (b*(3*c^2*d - e)*x*ArcTanh[(Sqrt[e]*Sqrt[-1 + c^2*x^2])/(c*Sqrt[d + e*x^2]
)])/(6*c^2*e^(3/2)*Sqrt[c^2*x^2])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 95

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 159

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[h*(a + b*x)^m*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(d*f*(m + n + p + 2))), x] + Dist[1/(d*f*(m + n
 + p + 2)), Int[(a + b*x)^(m - 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*g*(m + n + p + 2) - h*(b*c*e*m + a*(d*e*(
n + 1) + c*f*(p + 1))) + (b*d*f*g*(m + n + p + 2) + h*(a*d*f*m - b*(d*e*(m + n + 1) + c*f*(m + p + 1))))*x, x]
, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && GtQ[m, 0] && NeQ[m + n + p + 2, 0] && IntegersQ[2*m, 2
*n, 2*p]

Rule 163

Int[(((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/((a_.) + (b_.)*(x_)), x_Symbol]
 :> Dist[h/b, Int[(c + d*x)^n*(e + f*x)^p, x], x] + Dist[(b*g - a*h)/b, Int[(c + d*x)^n*((e + f*x)^p/(a + b*x)
), x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x]

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 587

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_))^(r_.), x
_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q*(e + f*x)^r, x], x, x^n],
x] /; FreeQ[{a, b, c, d, e, f, m, n, p, q, r}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 5347

Int[((a_.) + ArcCsc[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_.)*((d_.) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> With[{u =
 IntHide[(f*x)^m*(d + e*x^2)^p, x]}, Dist[a + b*ArcCsc[c*x], u, x] + Dist[b*c*(x/Sqrt[c^2*x^2]), Int[SimplifyI
ntegrand[u/(x*Sqrt[c^2*x^2 - 1]), x], x], x]] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && ((IGtQ[p, 0] &&  !(ILtQ
[(m - 1)/2, 0] && GtQ[m + 2*p + 3, 0])) || (IGtQ[(m + 1)/2, 0] &&  !(ILtQ[p, 0] && GtQ[m + 2*p + 3, 0])) || (I
LtQ[(m + 2*p + 1)/2, 0] &&  !ILtQ[(m - 1)/2, 0]))

Rubi steps

\begin {align*} \int \frac {x^3 \left (a+b \csc ^{-1}(c x)\right )}{\sqrt {d+e x^2}} \, dx &=-\frac {d \sqrt {d+e x^2} \left (a+b \csc ^{-1}(c x)\right )}{e^2}+\frac {\left (d+e x^2\right )^{3/2} \left (a+b \csc ^{-1}(c x)\right )}{3 e^2}+\frac {(b c x) \int \frac {\left (-2 d+e x^2\right ) \sqrt {d+e x^2}}{3 e^2 x \sqrt {-1+c^2 x^2}} \, dx}{\sqrt {c^2 x^2}}\\ &=-\frac {d \sqrt {d+e x^2} \left (a+b \csc ^{-1}(c x)\right )}{e^2}+\frac {\left (d+e x^2\right )^{3/2} \left (a+b \csc ^{-1}(c x)\right )}{3 e^2}+\frac {(b c x) \int \frac {\left (-2 d+e x^2\right ) \sqrt {d+e x^2}}{x \sqrt {-1+c^2 x^2}} \, dx}{3 e^2 \sqrt {c^2 x^2}}\\ &=-\frac {d \sqrt {d+e x^2} \left (a+b \csc ^{-1}(c x)\right )}{e^2}+\frac {\left (d+e x^2\right )^{3/2} \left (a+b \csc ^{-1}(c x)\right )}{3 e^2}+\frac {(b c x) \text {Subst}\left (\int \frac {(-2 d+e x) \sqrt {d+e x}}{x \sqrt {-1+c^2 x}} \, dx,x,x^2\right )}{6 e^2 \sqrt {c^2 x^2}}\\ &=\frac {b x \sqrt {-1+c^2 x^2} \sqrt {d+e x^2}}{6 c e \sqrt {c^2 x^2}}-\frac {d \sqrt {d+e x^2} \left (a+b \csc ^{-1}(c x)\right )}{e^2}+\frac {\left (d+e x^2\right )^{3/2} \left (a+b \csc ^{-1}(c x)\right )}{3 e^2}+\frac {(b x) \text {Subst}\left (\int \frac {-2 c^2 d^2-\frac {1}{2} \left (3 c^2 d-e\right ) e x}{x \sqrt {-1+c^2 x} \sqrt {d+e x}} \, dx,x,x^2\right )}{6 c e^2 \sqrt {c^2 x^2}}\\ &=\frac {b x \sqrt {-1+c^2 x^2} \sqrt {d+e x^2}}{6 c e \sqrt {c^2 x^2}}-\frac {d \sqrt {d+e x^2} \left (a+b \csc ^{-1}(c x)\right )}{e^2}+\frac {\left (d+e x^2\right )^{3/2} \left (a+b \csc ^{-1}(c x)\right )}{3 e^2}-\frac {\left (b c d^2 x\right ) \text {Subst}\left (\int \frac {1}{x \sqrt {-1+c^2 x} \sqrt {d+e x}} \, dx,x,x^2\right )}{3 e^2 \sqrt {c^2 x^2}}-\frac {\left (b \left (3 c^2 d-e\right ) x\right ) \text {Subst}\left (\int \frac {1}{\sqrt {-1+c^2 x} \sqrt {d+e x}} \, dx,x,x^2\right )}{12 c e \sqrt {c^2 x^2}}\\ &=\frac {b x \sqrt {-1+c^2 x^2} \sqrt {d+e x^2}}{6 c e \sqrt {c^2 x^2}}-\frac {d \sqrt {d+e x^2} \left (a+b \csc ^{-1}(c x)\right )}{e^2}+\frac {\left (d+e x^2\right )^{3/2} \left (a+b \csc ^{-1}(c x)\right )}{3 e^2}-\frac {\left (2 b c d^2 x\right ) \text {Subst}\left (\int \frac {1}{-d-x^2} \, dx,x,\frac {\sqrt {d+e x^2}}{\sqrt {-1+c^2 x^2}}\right )}{3 e^2 \sqrt {c^2 x^2}}-\frac {\left (b \left (3 c^2 d-e\right ) x\right ) \text {Subst}\left (\int \frac {1}{\sqrt {d+\frac {e}{c^2}+\frac {e x^2}{c^2}}} \, dx,x,\sqrt {-1+c^2 x^2}\right )}{6 c^3 e \sqrt {c^2 x^2}}\\ &=\frac {b x \sqrt {-1+c^2 x^2} \sqrt {d+e x^2}}{6 c e \sqrt {c^2 x^2}}-\frac {d \sqrt {d+e x^2} \left (a+b \csc ^{-1}(c x)\right )}{e^2}+\frac {\left (d+e x^2\right )^{3/2} \left (a+b \csc ^{-1}(c x)\right )}{3 e^2}+\frac {2 b c d^{3/2} x \tan ^{-1}\left (\frac {\sqrt {d+e x^2}}{\sqrt {d} \sqrt {-1+c^2 x^2}}\right )}{3 e^2 \sqrt {c^2 x^2}}-\frac {\left (b \left (3 c^2 d-e\right ) x\right ) \text {Subst}\left (\int \frac {1}{1-\frac {e x^2}{c^2}} \, dx,x,\frac {\sqrt {-1+c^2 x^2}}{\sqrt {d+e x^2}}\right )}{6 c^3 e \sqrt {c^2 x^2}}\\ &=\frac {b x \sqrt {-1+c^2 x^2} \sqrt {d+e x^2}}{6 c e \sqrt {c^2 x^2}}-\frac {d \sqrt {d+e x^2} \left (a+b \csc ^{-1}(c x)\right )}{e^2}+\frac {\left (d+e x^2\right )^{3/2} \left (a+b \csc ^{-1}(c x)\right )}{3 e^2}+\frac {2 b c d^{3/2} x \tan ^{-1}\left (\frac {\sqrt {d+e x^2}}{\sqrt {d} \sqrt {-1+c^2 x^2}}\right )}{3 e^2 \sqrt {c^2 x^2}}-\frac {b \left (3 c^2 d-e\right ) x \tanh ^{-1}\left (\frac {\sqrt {e} \sqrt {-1+c^2 x^2}}{c \sqrt {d+e x^2}}\right )}{6 c^2 e^{3/2} \sqrt {c^2 x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.19, size = 200, normalized size = 0.89 \begin {gather*} \frac {\sqrt {d+e x^2} \left (-4 a c d+b e \sqrt {1-\frac {1}{c^2 x^2}} x+2 a c e x^2+2 b c \left (-2 d+e x^2\right ) \csc ^{-1}(c x)\right )}{6 c e^2}+\frac {b \sqrt {1-\frac {1}{c^2 x^2}} x \left (-4 c^3 d^{3/2} \text {ArcTan}\left (\frac {\sqrt {d} \sqrt {-1+c^2 x^2}}{\sqrt {d+e x^2}}\right )+\sqrt {e} \left (-3 c^2 d+e\right ) \tanh ^{-1}\left (\frac {\sqrt {e} \sqrt {-1+c^2 x^2}}{c \sqrt {d+e x^2}}\right )\right )}{6 c^2 e^2 \sqrt {-1+c^2 x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(x^3*(a + b*ArcCsc[c*x]))/Sqrt[d + e*x^2],x]

[Out]

(Sqrt[d + e*x^2]*(-4*a*c*d + b*e*Sqrt[1 - 1/(c^2*x^2)]*x + 2*a*c*e*x^2 + 2*b*c*(-2*d + e*x^2)*ArcCsc[c*x]))/(6
*c*e^2) + (b*Sqrt[1 - 1/(c^2*x^2)]*x*(-4*c^3*d^(3/2)*ArcTan[(Sqrt[d]*Sqrt[-1 + c^2*x^2])/Sqrt[d + e*x^2]] + Sq
rt[e]*(-3*c^2*d + e)*ArcTanh[(Sqrt[e]*Sqrt[-1 + c^2*x^2])/(c*Sqrt[d + e*x^2])]))/(6*c^2*e^2*Sqrt[-1 + c^2*x^2]
)

________________________________________________________________________________________

Maple [F]
time = 180.00, size = 0, normalized size = 0.00 \[\int \frac {x^{3} \left (a +b \,\mathrm {arccsc}\left (c x \right )\right )}{\sqrt {e \,x^{2}+d}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*(a+b*arccsc(c*x))/(e*x^2+d)^(1/2),x)

[Out]

int(x^3*(a+b*arccsc(c*x))/(e*x^2+d)^(1/2),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(a+b*arccsc(c*x))/(e*x^2+d)^(1/2),x, algorithm="maxima")

[Out]

1/3*(x^4*arctan2(1, sqrt(c*x + 1)*sqrt(c*x - 1))*e^2 - d*x^2*arctan2(1, sqrt(c*x + 1)*sqrt(c*x - 1))*e - 2*d^2
*arctan2(1, sqrt(c*x + 1)*sqrt(c*x - 1)) + 3*sqrt(x^2*e + d)*e^2*integrate(1/3*(c^2*x^5*e^2 - c^2*d*x^3*e - 2*
c^2*d^2*x)*e^(-1/2*log(x^2*e + d) + 1/2*log(c*x + 1) + 1/2*log(c*x - 1))/(c^2*x^2*e^2 + (c^2*x^2*e^2 - e^2)*e^
(log(c*x + 1) + log(c*x - 1)) - e^2), x))*b*e^(-2)/sqrt(x^2*e + d) + 1/3*(sqrt(x^2*e + d)*x^2*e^(-1) - 2*sqrt(
x^2*e + d)*d*e^(-2))*a

________________________________________________________________________________________

Fricas [A]
time = 0.62, size = 593, normalized size = 2.64 \begin {gather*} \left [\frac {{\left (4 \, b c^{3} \sqrt {-d} d \log \left (\frac {c^{4} d^{2} x^{4} - 8 \, c^{2} d^{2} x^{2} + x^{4} e^{2} - 4 \, {\left (c^{2} d x^{2} - x^{2} e - 2 \, d\right )} \sqrt {c^{2} x^{2} - 1} \sqrt {x^{2} e + d} \sqrt {-d} + 8 \, d^{2} - 2 \, {\left (3 \, c^{2} d x^{4} - 4 \, d x^{2}\right )} e}{x^{4}}\right ) - {\left (3 \, b c^{2} d - b e\right )} e^{\frac {1}{2}} \log \left (c^{4} d^{2} + 4 \, {\left (c^{3} d + {\left (2 \, c^{3} x^{2} - c\right )} e\right )} \sqrt {c^{2} x^{2} - 1} \sqrt {x^{2} e + d} e^{\frac {1}{2}} + {\left (8 \, c^{4} x^{4} - 8 \, c^{2} x^{2} + 1\right )} e^{2} + 2 \, {\left (4 \, c^{4} d x^{2} - 3 \, c^{2} d\right )} e\right ) + 4 \, {\left (2 \, a c^{3} x^{2} e - 4 \, a c^{3} d + \sqrt {c^{2} x^{2} - 1} b c e + 2 \, {\left (b c^{3} x^{2} e - 2 \, b c^{3} d\right )} \operatorname {arccsc}\left (c x\right )\right )} \sqrt {x^{2} e + d}\right )} e^{\left (-2\right )}}{24 \, c^{3}}, \frac {{\left (8 \, b c^{3} d^{\frac {3}{2}} \arctan \left (-\frac {{\left (c^{2} d x^{2} - x^{2} e - 2 \, d\right )} \sqrt {c^{2} x^{2} - 1} \sqrt {x^{2} e + d} \sqrt {d}}{2 \, {\left (c^{2} d^{2} x^{2} - d^{2} + {\left (c^{2} d x^{4} - d x^{2}\right )} e\right )}}\right ) - {\left (3 \, b c^{2} d - b e\right )} e^{\frac {1}{2}} \log \left (c^{4} d^{2} + 4 \, {\left (c^{3} d + {\left (2 \, c^{3} x^{2} - c\right )} e\right )} \sqrt {c^{2} x^{2} - 1} \sqrt {x^{2} e + d} e^{\frac {1}{2}} + {\left (8 \, c^{4} x^{4} - 8 \, c^{2} x^{2} + 1\right )} e^{2} + 2 \, {\left (4 \, c^{4} d x^{2} - 3 \, c^{2} d\right )} e\right ) + 4 \, {\left (2 \, a c^{3} x^{2} e - 4 \, a c^{3} d + \sqrt {c^{2} x^{2} - 1} b c e + 2 \, {\left (b c^{3} x^{2} e - 2 \, b c^{3} d\right )} \operatorname {arccsc}\left (c x\right )\right )} \sqrt {x^{2} e + d}\right )} e^{\left (-2\right )}}{24 \, c^{3}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(a+b*arccsc(c*x))/(e*x^2+d)^(1/2),x, algorithm="fricas")

[Out]

[1/24*(4*b*c^3*sqrt(-d)*d*log((c^4*d^2*x^4 - 8*c^2*d^2*x^2 + x^4*e^2 - 4*(c^2*d*x^2 - x^2*e - 2*d)*sqrt(c^2*x^
2 - 1)*sqrt(x^2*e + d)*sqrt(-d) + 8*d^2 - 2*(3*c^2*d*x^4 - 4*d*x^2)*e)/x^4) - (3*b*c^2*d - b*e)*e^(1/2)*log(c^
4*d^2 + 4*(c^3*d + (2*c^3*x^2 - c)*e)*sqrt(c^2*x^2 - 1)*sqrt(x^2*e + d)*e^(1/2) + (8*c^4*x^4 - 8*c^2*x^2 + 1)*
e^2 + 2*(4*c^4*d*x^2 - 3*c^2*d)*e) + 4*(2*a*c^3*x^2*e - 4*a*c^3*d + sqrt(c^2*x^2 - 1)*b*c*e + 2*(b*c^3*x^2*e -
 2*b*c^3*d)*arccsc(c*x))*sqrt(x^2*e + d))*e^(-2)/c^3, 1/24*(8*b*c^3*d^(3/2)*arctan(-1/2*(c^2*d*x^2 - x^2*e - 2
*d)*sqrt(c^2*x^2 - 1)*sqrt(x^2*e + d)*sqrt(d)/(c^2*d^2*x^2 - d^2 + (c^2*d*x^4 - d*x^2)*e)) - (3*b*c^2*d - b*e)
*e^(1/2)*log(c^4*d^2 + 4*(c^3*d + (2*c^3*x^2 - c)*e)*sqrt(c^2*x^2 - 1)*sqrt(x^2*e + d)*e^(1/2) + (8*c^4*x^4 -
8*c^2*x^2 + 1)*e^2 + 2*(4*c^4*d*x^2 - 3*c^2*d)*e) + 4*(2*a*c^3*x^2*e - 4*a*c^3*d + sqrt(c^2*x^2 - 1)*b*c*e + 2
*(b*c^3*x^2*e - 2*b*c^3*d)*arccsc(c*x))*sqrt(x^2*e + d))*e^(-2)/c^3]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{3} \left (a + b \operatorname {acsc}{\left (c x \right )}\right )}{\sqrt {d + e x^{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3*(a+b*acsc(c*x))/(e*x**2+d)**(1/2),x)

[Out]

Integral(x**3*(a + b*acsc(c*x))/sqrt(d + e*x**2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(a+b*arccsc(c*x))/(e*x^2+d)^(1/2),x, algorithm="giac")

[Out]

integrate((b*arccsc(c*x) + a)*x^3/sqrt(e*x^2 + d), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {x^3\,\left (a+b\,\mathrm {asin}\left (\frac {1}{c\,x}\right )\right )}{\sqrt {e\,x^2+d}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^3*(a + b*asin(1/(c*x))))/(d + e*x^2)^(1/2),x)

[Out]

int((x^3*(a + b*asin(1/(c*x))))/(d + e*x^2)^(1/2), x)

________________________________________________________________________________________